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LETTER TO THE EDITOR 

Spin-dependent fractional QHE states in the N = 0 
Landau level 

P A Maksym 
Department of Physics, University of Leicester, Leicester LE1 7RH, UK 

Received 2 March 1989 

Abstract. Spi? assignments of fractional OHE states in the N = 0 Landau level are determined 
from finite-size calculations of the Coulomb energy. There is a spin-unpolarised ground state 
at 4 filling, with partial polarisation at .? filling and full polarisation at l /q  filling with q 
odd. This is explained in terms of competition between Coulomb repulsion, exchange and 
interaction of unlike spins. The experimental consequences are briefly discussed. 

At high magnetic fields the FQHE in the N = 0 Landau level is caused by the Laughlin/ 
Haldane spin-polarised electron liquid [l, 21; however, as first noted by Halperin [3], 
spin reversal is favourable in GaAs at low fields. Following pioneering work by Chak- 
raborty and Zhang [4], spin effects at particular filling factors, v ,  have been widely 
studied with attention focused on the unpolarised state [ 5 ]  at v = i and spin-reversed 
excitations [6,7] at v = 4. This Letter reports a systematic theoretical study of all 
accessible fractions, and unifies earlier results in a new picture.* It is found that, in the 
absence of the Zeeman energy, the preferred spins at important fractions v < 1 are: 
4, t t ;#, t 1 ; g ,  t 1 ;a ,  $ ,where t t , 5 and t 4 denoteful1,part andunpolarised. 
Corresponding results for 2 > v > 1 follow from electron-hole symmetry: 3 ,  t f ; 
6, t & ; Q ,  1 4 ; and 5, $ . The contrasting behaviour at v = 4 and v = 3 is remarkable. 
It occurs because a selection rule regulates the competition between Coulomb repulsion, 
exchange and a 'resonant' interaction between unlike spins. This is illustrated with 
computations of the cyclotron orbit centre correlation-a measurable function. Tilted 
field experiments [8] are consistent with the results reported here. 

The total energy of n ideal 2~ interacting electrons consists of a Coulomb term, Ec,  
and a Zeeman term: E = Ec(s,  B cos 0 )  + g*pBBs,. E ,  depends on the spin quantum 
numbers (spin squared = h2s(s + 1)) and the component of magnetic field B ,  normal 
to the ~ D E G .  When g" > 0 the Zeeman energy is lowest when the z component of spin, 
s, = -s. A fully spin-polarised state corresponds to the maximum value of s, smax, which 
is n/2 when v S 1 and n ( l / v  - i) when 2 > U > 1. The minimum value of s, 0 for n even 
and 4 for n odd, corresponds to an unpolarised state. Each s has a ground state (GS) but 
the absolute ground state (AGS) occurs at the spins*, which minimises E. Ifs* = s,,, the 
AGS is fully polarised for all B. However ifs* < smax a fully polarised AGS is not favoured 
when B is sufficiently small. Instead it is partly polarised or unpolarised, depending on 
the value of s*. The spins s* are determined here by finite-size calculations of E,. 
t Preliminary results were presented at the 1988 Wurzburg conference [16]. 

0953-8984/89/356299 + 08 $02.50 @ 1989 IOP Publishing Ltd 6299 



6300 Letter to the Editor 

101 

-I "1 i 
- 

-1 601 7 , , , -1 6 
l i l  0 1 2 3  2 2 2  

l 

-1 60' -1 bot  
I - ,  

- - - -  - -  - 

Figure I,  Spin dependence of E, for finite- 
size systems. (a) n = 6, = 3; ( b )  n = 6, 
y = $; ( c )  n = 5, Y = j; ( d )  n = 4, v = 3. 
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The calculations are done in the well known toroidal geometry which has the electrons 
in a rectangular, periodic cell of width U ,  height b. The starting point is the Hamiltonian 
given by Yoshioka [9] but modified to deal with spin [4].  As the aim is to study the 
physics, corrections for finite thickness and Landau level mixing are not included. 
Each eigenstate is found as a linear combination of Slater determinants that represent 
configurations of occupied Landau orbitals. However, this is harder than in the spin 
polarised case because the Hamiltonian matrix is larger. To mitigate this, basis states 
are constructed to be eigenstates of s2 and s, which transform according to the magnetic 
translational [ lo,  111 and twofold rotational symmetry of the spatial part of the Ham- 
iltonian. The program used was verified against the results of Zhang and Chakraborty 

Results for spin dependence of E, are given in figure 1. This shows the energies per 
electron, measured in units of e2/4n&, (27~/A)'/~where A is the area of the periodic cell. 
Each set of levels represents the lowest part of the energy spectrum for electrons in a 
rectangular cell with aspect ratio R = b/u = 0.8. This R-value lifts the degeneracies that 
occur for electrons in a square cell, while ensuring that exchange matrix elements are 
not unrealistically small. Only levels for v < 1 are shown. Energies for 2 > v > 1 can be 
obtained by electron-hole symmetry: in the absence of Landau level mixing, the spec- 
trum at 2 - v differs from the spectrum at v (<1) merely by a constant offset [7]. Figure 
1 confirms the spin assignments Stated earlier. Perhaps significantly, the value s*  = 1 at 
v = $ corresponds to partial fillings of v & = %, v t = B for the two spin components. 
The same partial fillings and s* appear to follow from the hierarchical model [2] if it is 

[41. 

Table 1. Spins s* deduced from finite-size results. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

4 2 2 0 1 0 1  0 1 2 1 0 1 2 1 0 1 2  
5 i t P t t 4  B f f t B t l f  
6 3 3 0 0  1 1 1 1  
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assumed that spin reversal occurs at each stage. Figure 1 also shows that gaps for As = 
? 1 transitions are smaller than for As = 0. This is consistent with existing ideas about 
spin-reversed excitations [6,7] and may well explain recent observations [8] of Zeeman- 
dominated gaps at low B. Table 1 details s* for a complete range of v ,  expressed as 
v = n/m where m is the number of magnetic flux quanta through A .  Most fractions, 
particularly v = 4, have part or unpolarised AGS (unpolarised AGS at v = $are discussed 
in [ 121). With the exception of & (where E, differences are <O. 1%) the trend is that fully 
polarised AGS are only favoured at v = l /q with q odd. 

To understand the physics of this the eigenstates have been examined in detail. The 
feature common to part and unpolarised AGS is a strong tendency for double occupation 
of Landau orbitals. This is quantified by the pair sum, Np, defined as the expectation 
value of Z,n, n, I . Here the n are number operators and j labels the centre coordinate of 
the Landau orbitals. (In a periodic cell the x-components of the orbit centres are at X,  = 
j S X ,  where 6 X =  2nI2/b and l 2  = h/eB.) Figure 2 shows how Np for unpolarised GS 
depends on m. Clearly there are minima at v = l / q  with q odd and maxima in between. 
The maxima do not always coincide with l / q  at q even. However, as explained later, 
there are good reasons for believing that minima always occur at v = l / q  with q odd. 

The reason why double occupation (henceforth called 'pairing') can be favoured is 
related to the physical nature of the Landau orbitals. In a periodic cell they are localised 
in x but delocalised in y :  for N = 0 each orbital occupies a strip of width =2f ,  centred on 
X,. Paired electrons interact via a type of 'resonance' where occupations mix in the 
manner j t , j .1 e j + h t , j - h & . This can be visualised be denoting pairs with I /  and 
single occupations with t or & , interspaced with dots to represent empty orbitals. For 
example, the picture is .  / /  . e 4 . t when h = 1. The resonant mixing (RM) lowersenergy 
by introducing correlation which makes the electrons stay apart along y .  This can be 
seen from a simple argument based on the uncertainty principle. The operator identities 
given in [13] lead to the commutation relation, [ X ,  y ]  = if2, between the centre coor- 
dinate X and the Cartesian coordinate y ,  so X and y obey the uncertainty relation 
AXAy = 1 2 .  Now apply this to the motion of twoelectronsrelative to their centre of mass. 
When they partly occupy the same Landau orbital the resonant interaction between them 
leads to an uncertainty A X  = hSX hence Ay = b/2nh. In effect, the interaction allows 
the otherwise delocalised state to develop structure in they direction on a length scale 
= b/h. This can be understood in detail by examining the correlation function, g ( r ) ,  
that is the expectation value [ 9 ]  of 

A 2 S(r + T ,  - r,)/n(n - 1) 
I +I 

In second quantisation 

g(4 = 2 F(l - i, i - k ,  & + , , k + l  (c,'c;'cks'ck) 
ss ' 
rikl 

where the care the usual fermion operators and the prime on the Kronecker delta means 
that sums are taken modulo m. The function F i s  related to the Landau orbitals Q, 

F(Z - i, i - k ,  r )8:+j ,k+l  = A  d r l  dr2 @.I" (rl)@F (r2)8(r + rl  - r2) i, 
x @ k ( r 2 ) @ I ( r l ) M n  - 1). 
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Figure 2. Pair sum for finite-size unpolarised states. The points give N p ;  the lines are to guide 
the eye. (a )  n = 4, s = 0; ( b )  n = 5 ,  s = 4. 

The physical content of g is a little clearer when the terms involving number operators 
are treated separately. After some rearrangement 

where 

p s s , ( i )  = X (nrsn,+,S,)  
I 

and GssJ(j, r) = F(O,j, r) - SssJF( j ,  0, r ) .  Physically, pss, is the correlation of cyclotron 
orbit centres occupied by spins ss’; its contribution to g is broadened by Gssj, the 
correlation function for two non-interacting electrons with orbit centre separation jSX.  
In principle, p could be deconvolved from measurements of g. The remaining term in 
(1) describes ‘hopping’ and ‘spin flips’. It is strongly affected by RM. Indeed the numerical 
results, combined with analytic evaluation of the overlap F ,  show that to order 
exp(-a2/12), RMcontributeS tog(0, y)inproportionto -cos(2nhy/b). Thisisareduction 
in correlation when y is small and corresponds to a reduction in Coulomb energy. The 
importance of RM is confirmed by numerical experiments in which the corresponding 
matrix elements are set to zero. Then energies of four-electron unpolarised GS change 
by -0.1 % at v = 4 but -6% at v = 3. As a result the 4 AGS reverts to being fully polarised. 
(Percentages are calculated without the constant Madelung [9] contribution to Ec.) 

RM competes with Coulomb ‘repulsion’ and ‘exchange’ because pairing costs repul- 
sive energy?, but the competition is regulated by a selection rule. The GS eigenvector is 
composed of a mixture of configurations of occupied Landau orbitals. Each configuration 
has a quantum number [9], J ,  related to the sum of the occupied orbital indices: J = 
CJ,, mod m. If c is the highest common factor of m and n,  only J s p is relevant because 
the states occur in degenerate multiplets [ll]. Configurations can interact (normally via 
a chain of intermediates) only if they have the sameJ. The most important configurations 
have low energy as measured by the sum of repulsive and exchange terms. Table 2 
gives examples that occur, with relative probability P ,  in s = 0 GS. The lowest-energy 
configurations consist entirely of singly occupied orbitals, arranged in regularly spaced 
clusters [14]. The optimum configurations with pairs are regular arrangements when the 
number of pairs is n/2, but more complicated when the number of pairs is less than n/2. 
Because of the competition with repulsion and exchange, the system can only benefit 
t ‘Repulsion’ and ’exchange’ come from the diagonal part of the Hamiltonian but RM comes from the off- 
diagonal part 
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Table 2. Examples of cluster (size 2 )  and pair configurations in n = 4 s = 0 GS. Note regular 
spacing and larger probability of 2-pair configuration at v = 3 .  

v Pair number Configuration P 

1 .0 
1.8 x lo-' 
8.6 x lo-* 

B O  . .  t f  . . . .  1 J . . l . O  
1 . . 1 . t . . . 1 1  . . . 9.1 x 10-3 
2 . . 1 1  . . . . . . 11 . . 8.5 x 10-3 

Figure 3. Orbit centre correlations versus separationj = X / 6 X .  The points give p ;  the lines 
are to guide the eye. (a )  $ground, n = 5; s = 8 ;  ( b )  4 ground, n = 5, s = 1; (c) d first excited 
state, n = 5, s = 4; ( d )  f ground, n = 5, s = b; ( e )  5 ground, n = 6, s = 3; (f) $ ground, 
n = 6.s = 0. 

from RM when energetically favourable configurations containing pairs interact with 
cluster configurations. This does not happen at v = l / q  with q odd because optimal 
arrangements of clusters do not have the same J as optimal arrangements containing 
pairs. For example, at v = the configuration 1 t , 1 & ,7 t ,7 & is optimal and has J = 
4 whereas the configuration 1 t , 2  t , 7  & , 8  4 is optimal but hasJ = 2. In fact the general 
rule for even n is that at v = 3 regular arrangements of n/2 pairs haveJ = n ,  while regular 
arrangements of identical clusters have] = n/2 (regardless of cluster size); at v = 3 both 
types of configuration have J = n/2. This is a strong hint that the J selection rule which 
determines finite-size behaviour is important for larger systems. 

The orbit centre correlation provides further insight into clustering and pairing. 
Instead of correlations of specific spins as defined in (1) it is more useful to consider the 
total correlation p = 2:sslpss~ and the unlike spin correlation p 1 + p 1 (figure 3). When 
normalised, these functions give probability distributions of orbit centre separations. 
Both functions are symmetric about j = m/2 (because of periodic boundary conditions) 
and p = n whenj  = 0, while p,,.(O) = Np when s # s'. To understand their meaning first 
consider a single configuration. A helpful example is 4 & . . . . & J, . . . & . . . because it 
and other configurations with the same p dominate the n = 5 ,  v = 4 AGS. The example 
has two separations of one unit of 6X (see clusters) hence p(1) = 2. Similarly, p is 0 at 
j = 2,3 and has its peak value, 3,  a t j  = 5 .  Now examine the p for the exacts = ~ A G S  at 
v = 4 (figure 3(a ) ) .  It resembles p for the dominant configuration: large at j = 1 and 
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Figure 4. Pair correlation functions for polarised (broken curves) and unpolarised (full 
curves) GS at U = f and 3. The lower sets of curves give various contributions to the full g 
(upper curves) as defined in the text. (a )  n = 5, v = d ;  ( b )  n = 6, U = f. 

small a t j  = 2 (reflecting the cluster size 2) with peaks a t j  = 5 ,  10 (reflecting the cluster 
spacing). However, the peaks are broader than for the dominant configuration due 
to mixing with other configurations. (Mixing breaks clusters: . 1 J, , e J, . , 1 which 
reduces energy like RM. Cluster sizes other than 2 also occur but are less important.) 
Next compare the p for the five-electron AGS at s = 4 (figure 3(a)) and the GS at s = t 
(figure 3(b) ) .  They are remarkably similar. This suggests that the physical nature of the 
Q GS is very insensitive to spin. The correlation of unlike spins for five electrons at v = 5 
is shown in the centre,of figure 3. For the GS at s = t, which is unaffected by pairing 
(figure 3 ( d ) ) ,  there is very little short-range correlation. However, the situation is 
different for the first excited state at s = i (figure 3(c)). This has the relatively large pair 
sum of 0.5003 and its unlike spin correlation has peaks a t j  = 0 , 2  with a minimum a t j  = 
1. This is the signature of RM (electrons in a resonant pair cannot have a separation of 
1). Finally, examine p for the 3 GS. In contrast to v = 5 ,  the p at s = 0 (figure 3(f)) and 
s = 3 (figure 3(e) )  are clearly different. p for the s = 0 AGS has a minimum at j = 1 and 
is large at j = 2 because RM is important. The structured form of p is consistent with 
liquid GS because the p-contribution to g is modified according to (1): p explicitly gives 
physical information which is hidden in g. 

This is illustrated in figure 4 which shows g(0, y )  for both polarised and unpolarised 
GS at v = Q and 3 .  The upper curves show g and the lower curves two contributions which 
sum tog. The contribution labelled coxc includes the p-terms from (1) together with the 
contribution of spin flip processes to the remaining terms, i.e. processes that affect only 
the distribution of spins (for example t . J, + . t ). When multiplied by V(r)  (the 
Coulomb potential) and integrated this contribution gives the repulsive and exchange 
contributions to the total energy. The second contribution shown in figure 4 comes from 
the remaining terms in (l), i.e. hopping processes. At v = i spin reversal clearly has 
very little effect on g(0, y )  and its effect on g ( x ,  0) is even smaller. In contrast, there are 
dramatic effects at I, = f. The full g increases at large y (-b/2) and decreases at small y .  
In addition there is a large increase in the coxc contribution at small y which is mostly 
cancelled by a decrease in the hopping contribution. This change is related partly to RM 
and partly to changes in exchange effects (a similar but smaller change occurs at Y = 5 ) .  



Letter to the Editor 6305 

Further, the hopping contribution to g(0, y )  is, to a good approximation, proportional 
to -cos(2ny/b). As deduced earlier, this is related to RM and leads to the changes in 
correlation which make the s = 0 state energetically favourable. 

There remains the question of what happens in other geometries. In the toroidal 
geometry used here the Landau orbitals are simultaneous eigenstates of X(x  component 
of centre coordinate), p y  (momentum: -ih alar) and energy, with one to one cor- 
respondence between eigenvalues of Xandp,.  An alternative is the disc geometry [13] 
where the orbitals are simultaneous eigenstates of R2 (square of radial part of centre 
coordinate) and L, (angular momentum) as well as energy, with one to one cor- 
respondence between eigenvalues of R2 and L,. In both geometries the orbitals are partly 
delocalised: when the geometry is toroidal there is delocalisation in y with localisation in 
x while in the disc geometry there is delocalisation in the polar angle, 9, with localisation 
in the radial direction. Double occupation of these orbitals results in mixing of orbitals 
with different values of X o r  R2 respectively. By analogy with the present results for the 
toroidal geometry, it is expected that in the disc geometry the mixing will introduce 
correlations in the v, direction. It is plausible that this will reduce the energy of the 
system but the details need to be verified. 

In summary, finite-size results imply the new spin assignments #, 4 T 1 , 
be determined by regulated competition between Coulomb repulsion, exchange and 
resonant interaction of unlike spins. In practice this has important consequences, par- 
ticularly for states with small Zeeman energies. Experimental studies of these states 
[8] are consistent with the predicted spins and spin-reversed excitations [6,7]. More 
speculatively, there could be local minima in E,@) at favourable partial fillings v f , v & 
and this could affect the small gaps that occur when the Zeeman component aligns total 
energies for different s. Consequently, there may be interesting, observable structure 
in the transition t 4 + $ + t f . Emergence from the transition may account for 
threshold effects seen in activation data [15]. In principle, measurements of g, p and s 
would be the ideal way to test the findings reported here. 

3, 3 2  $ together with the expected [4,5] 3 ,  3 t f , 3 , 0  t & . The assignments appear to 

I would like to thank Dr  R G Clark and his group for many useful discussions and access 
to their data prior to publication. 

Noteadded inproof. Very recently Clark eta1 have obtained experimental data which indicate that there is an 
unpolarised ground state at v = 3 [17] in addition to the one already found at Y = $ [8]. They observe 
crossover between polarised and unpolarised behaviour at a field of about 3.1 T when the electron density is 
4.5 X 1O’O cm-2 and the calculations described here have been extended to estimate this crossover field. When 
finite thickness effects are included via the Fang-Howard variational wavefunction, crossover for the six- 
electron system is found to occur at about 5 T. The agreement with experiment is reasonable in view of 
uncertainties about finite size corrections, Landau level mixing and the appropriate value of the Fang-Howard 
variational parameter. 
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